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Introduction - Motivation

e Spectrum management issues due to growing user community

— Congestion in the X-Band space-to-ground data links is creating the need
for cognitive radio capabilities

What do we need from transmit power amplifiers in a cognitive
communication system?
I. Re-configurability
* High output power; without sacrificing efficiency
* Operating frequency; without sacrificing efficiency
Il. Linearity



Benefits

Higher Efficiency Means
* Saved DC power
* Decreased Heat
* Efficiency is lost primarily through power dissipation within the
transistor junction and conductor losses.
* Improved Thermal Reliability

Decrease in Heat Sink Mass

Potential to Enable Low Cost Cognitive Telemetry:
* Avoids the need for multiple T, and R, modules

Applications include:
* NASA Missions
* Small Satellites and Spacecraft
* Military Unmanned Air Vehicles
 Commercial/Amateur Cubesats



Challenges

Efficiency

* High Efficiency SSPA’s require harmonic tuning - such as Class-F and Inverse
Class-F designs. Matching circuit is complex and inherently narrow band.

Wideband Devices

* Class-F type wideband harmonic tuning techniques used at lower frequencies are
unrealizable at X-band

Power Variability
* Amplifiers efficiency drops off when operating below saturation

GaN Transistor Frequency Limitation
* Achieving max PAE with Class-F type amplifiers requires F; > 3¥ harmonic
* Current commercially available transistors have an F; of 18 GHz

* High F; of GaN HEMTs comes at the expense of feature size and power density
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Wide-Band Reconfigurable Harmonically Tuned PA

*IMN (Input Matching Network)
*OMN (Output Matching Network)
*ISW (Input Switch)

*OSW (Output Switch)
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Inverse Class-F GaN SSPA at X-Band

Harmonics are reflected to
reshape the voltage and
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Fabricated Inverse Class-F Amplifier
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Tuning of Inverse Class-F Amplifier
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Inverse Class-F P_ ., PAE, Gain and VSWR
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Inverse Class-F Bandwidth

70 MHz bandwidth
where Pout > 36 dBm

and PAE > 35%
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Bottom view during mounting

3D printed holder

Top view after insertion
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Thermal Management

Freq. (GHz) P,, (dBm) Vps (V)  Gain (dB) PAE (%) Temp (°C)

29.9 32 6.3 37.3

95

GaN

transistor | RF output

Operating
conditions
observed
through thermal
imaging

Operating conditions of measured package temp = 95°C :

DC Power Dissipation=7 W
« Data sheet indicates for package temperature of 95°C,
the max allowed power dissipation is = 9 W.
Hence, achieved thermal safety margin of = 22%.
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Dual Band Multi-Network Design
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Reconfigurable concept can be applied to dual-band transmitters
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Power Variability - Balanced Amplifier
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Microstrip Branch Line 3-dB
Hybrid Coupler

Substrate height, h = 0.02 inch & €. = 3.0

Measured vs Simulated Results

Simulated and Measured S(1,1)
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Fabricated Balanced Amplifier

-Circuits
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P., vs. P, for Single & Balanced MMIC Amplifiers

Frequency = 8.546 GHz
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Conclusion

* Challenges have been presented for achieving the desired
high efficiency wide-band operation needed for a cognitive
system at X-band

* An inverse Class-F GaN SSPA operating at 8.4 GHz has been
shown to achieve 5W of output power at 40% PAE with a
70 MHz bandwidth of Pout > 36 dBm and PAE >35%.

* A reconfigurable harmonically tuned SSPA has been
proposed and justified to provide wideband high efficiency

A balanced amplifier has been presented for additional
consideration in reconfigurable power topologies.
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